Spectrum of Secondary Submodules

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The secondary radicals of submodules

Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. In this paper, we will introduce the secondary radical of a submodule $N$ of $M$ as the sum of all secondary submodules of $M$ contained in $N$, denoted by $sec^*(N)$, and explore the related properties. We will show that this class of modules contains the family of second radicals properly and can be regarded as a dual o...

متن کامل

Spectrum of prime L-submodules

Let L be a complete lattice. We introduce and characterize the prime L-submodules of a unitary module over a commutative ring with identity. Finally, we investigate the Zariski topology on the prime L-Spectrum of a unitary module, consisting of the collection of all prime L-submodules, and prove that for L-top modules the Zariski topology on L-Spec(M) exists. © 2007 Elsevier B.V. All rights res...

متن کامل

CLASSICAL 2-ABSORBING SECONDARY SUBMODULES

‎In this work‎, ‎we introduce the concept of classical 2-absorbing secondary modules over a commutative ring as a generalization of secondary modules and investigate some basic properties of this class of modules‎. ‎Let $R$ be a commutative ring with‎ ‎identity‎. ‎We say that a non-zero submodule $N$ of an $R$-module $M$ is a‎ ‎emph{classical 2-absorbing secondary submodule} of $M$ ...

متن کامل

Some topological properties of spectrum of fuzzy submodules

Let $R$ be a commutative ring with identity and $M$ be an$R$-module. Let $FSpec(M)$ denotes the collection of all prime fuzzysubmodules of $M$. In this regards some basic properties of Zariskitopology on $FSpec(M)$ are investigated. In particular, we provesome equivalent conditions for irreducible subsets of thistopological space and it is shown under certain conditions$FSpec(M)$ is a $T_0-$spa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2021

ISSN: 1742-6588,1742-6596

DOI: 10.1088/1742-6596/1879/3/032007